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Abstract

By poly(A-B) we denote a chain with repeating sequence –A-B–, such as polyoxymethylene. Here A and B stand for a single atom,

e.g., –O–, or a group of atoms, e.g., –CH2–. All n bond vectors are of the same length, l, as are all bond dipole moment vectors, m. The manner

in which the characteristic ratio of the dipole moment, Dnhhm2i0/nm2 approaches its asymptotic limit is related quantitatively to the behavior

of subchains of various sizes in poly(A-B). Illustrative numerical calculations with rotational isomeric state (RIS) models for several

polymers are consistent with the predictions. The approach of Dn to its asymptotic limit is sensitive to longer subchains than is the approach

of the characteristic ratio of the end-to-end distance, Cnhhr2i0/nl2, to its asymptotic limit, due to the differences in the connectivity of the

bond vectors (head-to-tail) and the bond dipole moment vectors (head-to-head, tail-to-tail).

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The mean square dipole moment, hm2i, is one of the

fundamental conformation-dependent physical properties of

a polar macromolecule [1–4]. The RIS model is especially

useful for rationalizing hm2i because this property, in

contrast to the mean square end-to-end distance, hr2i, is

insensitive to the excluded volume effect in long polar

polymers for which the average projection of the dipole

moment vector onto the end-to-end vector, hm$ri0, is zero in

the unperturbed chain [5–8]. Nearly four decades of

literature contain numerous joint experimental and RIS

studies of hm2i0 for chain molecules [9–40] or RIS studies

that make comparisons with experimental results published

elsewhere [41–61]. Theoretical evaluations of hm2i0 have

also been employed to understand the behavior of chains for

which experimental results were not available [62–73].

The chain vectors r and m can be treated as a sum of

vectors associated with individual bonds in the chain. The

vectors are the bond vector, l, and the bond dipole moment

vector, m. The n bond vectors are connected in a head-to-
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tail fashion in a linear chain. In general, some of the bonds

in the chain may have a null bond dipole moment vector, as

is the CH2–CH2 bond in polyoxyethylene, and bonds that

are not in the main chain may make important contributions

to hm2i, as in the poly(vinyl alkyl ether)s. However, for

chains of the type poly(A-B), composed of two different

types of atoms that alternate in their appearance in the chain,

and in the absence of polar side chains, as in polyoxy-

methylene (POM), the same relationship connects the li and

r, and the mi and m.

r ¼
Xn
i¼1

li (1)

m ¼
Xn
i¼1

mi (2)

Every bond in the main chain has a non-zero li and a non-

zero mi, and all n of the li are of the same length, as are all n

of the mi. The only important difference is that the li are

connected head-to-tail, and the mi are connected head-to-

head, tail-to-tail. Such chains typically have characteristic

ratios for the end-to-end distance, Cn, that are larger than

one.

Cnh
hr2i0

nl2
(3)
Polymer 46 (2005) 4361–4367
www.elsevier.com/locate/polymer

http://www.elsevier.com/locate/polymer


C.A. Helfer, W.L. Mattice / Polymer 46 (2005) 4361–43674362
However, the corresponding characteristic ratio for the

dipole moment, Dn, is usually less than one.

Dnh
hm2i0

nm2
(4)

Our concern here is with the manner in which Dn for

poly(A-B) makes the final approach to its asymptotic limit,

as represented quantitatively by the initial slope of Dn vs.

1/n. A model-independent analytical expression for this

initial slope is obtained by a method that parallels the recent

treatment of the analogous property of Cn, namely the initial

slope of Cn vs. 1/n [74]. RIS calculations are performed to

illustrate how the short-range interactions in the chain affect

the value of [dDn/d(1/n)]1/nZ0. Some of the results are not

surprising. Thus we find that [dDn/d(1/n)]1/nZ0 is usually

positive, in contrast with [dCn/d(1/n)]1/nZ0, which is usually

negative. The difference in sign is expected if CNO1 but

DN!1. However, CNO1 does not guarantee that [dCn/d(1/

n)]1/nZ0 will always be negative, as documented by the case

of syndiotactic poly(methyl methacrylate) [74]. A more

surprising conclusion from the present work is that the value

of [dDn/d(1/n)]1/nZ0 can be more sensitive to the behavior

of longer subchains than is the value of [dCn/d(1/n)]1/nZ0,

even when the absolute value of [dDn/d(1/n)]1/nZ0 is two

orders of magnitude smaller than the absolute value of [dCn/

d(1/n)]1/nZ0. This surprising conclusion follows from

numerical calculations for POM and arise from the

difference in the connectivity of the bond vectors, l, and

the bond dipole moment vectors, m.
2. Mathematical formulation

An analytical expression for [dDn/d(1/n)]1/nZ0 for

poly(A-B) can be obtained from Eqs. (2) and (4), along

with the assumption that the flexible homopolymer has an

even number of bonds, so that its two ends are indis-

tinguishable. The approach is perfectly analogous to the one

employed recently in the investigation of [dCn/d(1/n)]1/nZ0

[74]. Since all of the bond dipole moment vectors are of the

same length, hm2i and Dn are given by Eqs. (5) and (6),

respectively.

hm2iZ nm2 C2
XnK1

iZ1

Xn
jZiC1

hmi$mji (5)

Dn Z 1C
2

nm2

� �XnK1

iZ1

Xn
jZiC1

hmi$mji0 (6)

Eq. (6) can also be written using a unit vector vi that is

parallel with mi, vihmi/mi.

Dn Z 1C
2

n

� �XnK1

iZ1

Xn
jZiC1

hvi$vji0 (7)

The analogous expression for Cn uses the unit vector, ui, that
is parallel with li, uihli/li [74]:

Cn Z 1C
2

n

� �XnK1

iZ1

Xn
jZiC1

hui$uji0 (8)

To facilitate the comparison of these two properties of the

chain, Eq. (7) can be written in terms of the ui by

incorporating the difference in the connectivity of the vi
and the ui.

vi ¼ ðK1Þiui (9)

Dn Z 1C
2

n

� �XnK1

iZ1

Xn
jZiC1

ðK1ÞjKihui$uji0 (10)

Taking n to be large enough so that it lies within the limiting

region were Dn becomes linear in 1/n, the initial slope of Dn

vs. 1/n can be written in terms of Dn and D2n [74].

dDn

dð1=nÞ

� �
1=nZ0

ZLim
n/N

½K2nðD2n KDnÞ� (11)

An instructive expression for this initial slope can be

obtained by separating the double sum in Eq. (10) into three

parts, defined in perfect analogy to the similar separation in

the recent treatment of Cn [74].

T1;2n Z
Xn
iZ1

X2n
jZnC1

ðK1ÞjKihui$uji0 (12a)

T2;2n Z
X2nK1

iZnC1

X2n
jZiC1

ðK1ÞjKihui$uji0 (12b)

T3;2n Z
XnK1

iZ1

Xn
jZiC1

ðK1ÞjKihui$uji0 (12c)

The desired expression can be written in terms of these three

double sums [74].

dDn

dð1=nÞ

� �
1=nZ0

ZLim
n/N

½K2ðT1;2n CT2;2n KT3;2nÞ� (13)

Since we consider only homopolymers with an even number

of bonds, the ends of the chain are indistinguishable, and

therefore T2,2nZT3,2n.

dDn

dð1=nÞ

� �
1=nZ0

ZK2T1;N (14)

Since hui$uji0 for a flexible chain must approach zero as jKi

increases without limit, the double sum required for T1,N

can be accurately evaluated by considering only those

values of hui$uji0 for which the number of individual terms

is jKi [74]. This fact allows the rewriting of the double sum

as a single sum over khjKi.

dDn

dð1=nÞ

� �
1=nZ0

ZK2
XN
kZ1

kðK1Þkhui$uiCki0 (15)
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In Eq. (15), it is understood that bond i is sufficiently far

removed from either end of the chain so that end effects do

not influence the sum. The corresponding expression for Cn

does not contain the factor of (K1)k [74].

dCn

dð1=nÞ

� �
1=nZ0

ZK2
XN
kZ1

khui$uiCki0 (16)

In the next section, the influence of the factor of (K1)k is

illustrated by using RIS models for several chains to

calculate the hui$uiCki0 as well as Cn and Dn.
3. Illustrative numerical calculations

The numerical calculations use the geometry and short-

range interactions reported in previously published RIS

models for polydimethylsiloxane (PDMS) [41], polydi-

methylsilylenemethylene (PDMSM) [46], and POM [49].

The customary generator matrices were used to calculate

hr2i0 and hm2i0 as a function of n [75], and the derivatives

specified by the left-hand sides of Eqs. (15) and (16) were

obtained from the initial slope of the appropriate character-

istic ratio vs. 1/n. The values of hui$uiCki0 were calculated

as the 1,1 element of the unperturbed average of the serial

product of transformation matrices, hTiTiC1.TiCkK1i0
[74]. The results reported here are the averages over the

two possible choices of the directionality of bond i, A–B and

B–A. The behavior of hui$uiCki0 and khui$uiCki0 for PDMS

was reported previously [74], as was the numerical result for

[dCn/d(1/n)]1/nZ0 [76].

Figs. 1–3 show hui$uiCki0, khui$uiCki0, and k(K1)k

hui$uiCki0, respectively, for POM, using a temperature of

298 K. The hui$uiCki0 exhibit an oscillation superimposed

on a monotonic decay. The tendency for the formation of

short gauche helices in unperturbed POM produces the
Fig. 1. The values of hui$uiCki0 for POM, usin
oscillations and the negative value of hui$uiC2i0. The

underlying monotonic decay arises because ui for any

flexible chain must become completely decorrelated from

uiCk in the limit as k/N. The value of hui$uiCki0 falls

below 0.01 when kO42.

Multiplication of each term in Fig. 1 by k produces the

results shown in Fig. 2. The signature of the gauche helices

is still apparent, but the decay to zero is shifted to larger

values of k. The value of khui$uiCki0 does not fall below 0.01

until kO91. The sum on the right-hand side of Eq. (16),

obtained as the area under the curve in Fig. 2, is equal to 51.

The value of the right-hand side of this equation, obtained

by direct calculation of Cn as a function of n, is K102.

Therefore, the manner in which Cn specified by a RIS model

approaches its asymptotic limit is accurately described by

Eq. (16), as expected [74].

Fig. 3 shows the result when the factor (K1)k is included

in each term in the sum. The first three terms are negative

and the remaining terms alternate in sign. This alternation

causes the area under the curve in Fig. 3 to be drastically

smaller than the area under the curve in Fig. 2. The absolute

value of [dDn/d(1/n)]1/nZ0, from Eq. (15), is more than

two orders of magnitude smaller than the value of [dCn/

d(1/n)]1/nZ0 from Eq. (16). It is also of the opposite sign. Cn

approaches its asymptotic limit from below, but Dn

approaches its limit from above.

The validity of Eqs. (15) and (16) can be illustrated by

plotting the terms on the left-hand side, as obtained by direct

calculation of Cn and Dn, vs. the terms on the right-hand

side, as obtained from hui$uiCki0. This plot is shown in Fig.

4 for data obtained from previously published RIS models

for POM [49], PDMSM [46], and PDMS [41]. The solid

straight line has a slope of 1 and passes through the origin.

Since the points from the RIS calculations fall very close to

this straight line, Eqs. (15) and (16) accurately capture the

behavior of these unperturbed chains.
g the RIS model of Abe and Mark [28].



Fig. 2. The values of khui$uiCki0 for POM, using the RIS model of Abe and Mark [28].
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It is of interest to compare the sizes of the subchains that

contribute significantly to the values of [dCn/d(1/n)]1/nZ0

and [dDn/d(1/n)]1/nZ0. That comparison is made in Fig. 5,

using the data for POM that is reported in Figs. 2 and 3. The

vertical axis is the cumulative contribution of subchains up

through the specified value of k to the pertinent summations,

i.e., it is either

CumC

h K2
XN
kZ1

khui$uiCki0

 !K1

K2
Xk
kZ1

khui$uiCki0

 !
(17)

or
Fig. 3. The values of k(K1)khui$uiCki0 for POM, u
CumDh K2
XN
kZ1

kðK1Þkhui$uiCki0

 !K1

! K2
Xk
kZ1

kðK1Þkhui$uiCki0

 ! (18)

By definition, CumC and CumD have an asymptotic limit of

1 as k/N. The former ratio, which is pertinent to [dCn/d(1/

n)]1/nZ0, approaches the limit monotonically from below,

and is within 99% of the limit when kO71. The latter ratio,

which is pertinent to [dDn/d(1/n)]1/nZ0, has a slower

convergence and oscillates about 1. It is not reliably within

99% of the asymptotic limit until k reaches 100. Although

[dDn/d(1/n)]1/nZ0 is two orders of magnitude smaller in
sing the RIS model of Abe and Mark [28].



Fig. 4. Values of [dCn/d(1/n)]1/nZ0 and [dDn/d(1/n)]1/nZ0 obtained by direct calculation ofCn andDn, vs. the values ofK2Skhui$uiCki0 andK2Sk(K1)khui$uiCki0,

respectively, using RIS models for POM [49], PDMSM [46], and PDMS [41]. The straight line has a slope of one and passes through the origin. The results for

[dCn/d(1/n)]1/nZ0 andK2Skhui$uiCki0 for PDMS are from Ref. [74]. Filled and open symbols denote [dCn/d(1/n)]1/nZ0 and [dDn/d(1/n)]1/nZ0, respectively. Results

for POM, PDMSM, and PDMS are plotted using :, C, and &, respectively.
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absolute value than [dCn/d(1/n)]1/nZ0, it is sensitive to

longer subchains, due to the oscillations imposed by the

head-to-head, tail-to-tail connection of the bond dipole

moment vectors.
4. Conclusion

The manner in which the characteristic ratio of the dipole

moment for poly(A-B) approaches its asymptotic limit is

accurately given by the sum of the terms k(K1)khui$uiCki0,

where ui is a unit vector along bond i. The oscillations

produced by the head-to-head, tail-to-tail connectivity of the
Fig. 5. Convergence of the sums on the right-hand side of Eq. (15) (monotonically

measured by the CumC and CumD defined in Eqs. (17) and (18), respectively. Bo
bond dipole moment vectors cause the approach of Dn to its

limit to be sensitive to longer subchains than is the approach

of Cn to its limit.
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